UTS: A new modeling methodology with UML and
Test case generation, applied in conjunction with
Scrum framework

Bouchaib Falah
School of Science and Engineering
Al Akhawayn University
Ifrane, Morocco
b.falah@aui.ma

Abstract—The software engineering discipline involves
numerous chained processes, the bare minimum being
requirements identification, analysis and design,
implementation, testing and deployment. These processes can be
tackled following different traditional project management
methods and approaches, namely the Waterfall, V-Model....
The problems of these linear approaches with the listed
processes are the impossibility to generate test cases at an early
stage of the lifecycle, with the delayed testing process at later
stages, changes become very costly both in terms of budget and
human resources.

This paper introduces a standalone modeling methodology
which encompasses the most used UML diagrams, a model-
based test case generation technique all applied Scrum
Framework, The most used and popular modern project
management framework

Keywords—UML, Test Case Generation, Agile, Scrum,
Project Management

I. INTRODUCTION

Even with UML being the industry standard for software
modeling and design, not all the UML diagrams in its
metamodel specification are being used, often times than
not, researchers and engineers find themselves using just a
limited set of diagrams out of all 14 diagrams in the Unified
Modeling Language set [1]. On his blog I. Jacobson states
“For 80% of all software only 20% of UML is needed”. The
large UML set of diagrams might confuse beginners in the
modeling process and more time will be spent on deciding
which diagrams to use for what problems, which is not
practical especially knowing how tight project schedules can
be.

Another issue with UML is support of testing, this latter
is a critical phase in the lifecycle of any software system.
Every software needs to go through the testing phase in
order to evaluate the level of conformance of the actual
software output with the expected output which was initially
described in the requirements. One way of doing so is by
using Test Cases, which can also be called Test Suites, some
of the various test case generation techniques are:

[l Model-based Testing

[1 Goal-oriented approach

[1 Specification-based approach
[Source-code-based approach

Soufiane Karroumi
School of Science and Engineering
Al Akhawayn University
Ifrane, Morocco
s.karroumi@aui.ma

Omar Lahkim
School of Science and Engineering
Al Akhawayn University
Ifrane, Morocco
o.lahkim@aui.ma

Even with a proper, filtered set of UML diagrams and a
good model-based test cases generation technique, if we are
still in the context of traditional software management, the
outcome will not be as fruitful. Traditional software
development methods (V-Model...) are no longer suitable,
they are heavy-weight processes focusing more on the
industrialization and standardization. To deal with this
outdated methods, Agile development methodologies have
emerged and have drawn increasingly more attention
because of the way they handle the processes of software
projects.

For all the previously mentioned problems, this paper

presents a standalone modeling approach featuring:

[] A selection of the most used UML diagrams -or
what could be referred to as “essential UML”-
containing only a small set of the diagrams and not
all 14 diagrams. The choice of which diagrams are
the most used and which ones are the less used is
based on an investigation of the following sources:
The books about the UML, IT UML University
courses, Tutorials, Tools for UML models
production, conducting a personal opinion survey
[2]: asking different roles (academics and
researchers, IT practitioners) about their usage,
which parts of UML they know and which they
have never used.

[] Test case generation from UML diagrams: a
model-diagram-based testing technique, it will rely
on the previously selected UML diagrams (most
used ones) to generate test cases which are also
called test suites. This way, UML will be also used
for a purpose different than its origin and it will
start playing a significant role in testing phase too,
helping project team determine the conformance of
the test output with the described requirements, the
test case generation process will be shifted to
earlier steps of the software engineering process.

[J A combination of Scrum -Agile framework-
with the chosen UML diagrams and their
corresponding test case generation techniques:
this is an attempt to map the UML modeling
technologies with the practices of the most popular

and used Agile framework, that is Scrum. This
combination is called the Scrum-UML modeling
approach and it is aimed to provide a modern
project management environment for the UML
modeling process; focus on rapid and frequent
deliverables or what can be called "A Working
Piece of Software".

This way, the modeling task will be done in an iterative
and an incremental manner alongside test case generations:
Software modelers will have "Essential UML" instead of the
entire UML diagrams collection, they will perform the
modeling process in an incremental manner as opposed to
traditional project management, and they will continuously
generate test cases for the slight improvements committed in
the multiple iterations.

II. RELATED WORK

The importance of modeling and design in the successful
deployment of software projects is undeniable; hence there
has always been attempts to improve the modeling tools and
languages, especially the Unified Modeling Language.
Norman W. et al. introduced an extension of the UML
called The Unified Modeling Language for Interactive
Applications; it preserves the semantics of UML but adds
supports for Ul design. Birgit et al. also proposed an
extension of the UML 2 Activity diagrams with Business
Process Goals and Performance Measures. However, both
these attempts focus on just one aspect of the UML diagram
and tries to improve it without dealing with UML as a whole
and trying to sort out which diagrams should the
propositions focus on the most.

Additionally, Gianna et al. from the University of
Genova conducted a study -on which this paper is based- to
determine which UML diagrams are the most used,
investigating both academic and IT industries as well. These
investigations covered books, courses, tutorials and tools
about UML, and the outcome of this research is just the
Usage Levels of UML diagrams, the results of this study
were not used anywhere else to introduce a new modeling
methodology whatsoever.

Model-Based testing on the other hand has undergone
significant work, Bouchaib Falah et al. [7] has contributed
significantly by inspecting and evaluating some test case
generation techniques which led to TCG from Class, Use
Case, Activity and Sequence diagrams. Still, this value
proposition is thought of in the context of Traditional
project Management with all its already discussed
drawbacks.

All in all, numerous attempts have been conducted in
UML, Testing and Project management, however, none of
the attempts has tried to investigate collectively all the work
done in those different disciplines in order to introduce a
whole new, standalone approach. This paper aims to collect
and combine separate work achieved in modeling, testing
and project management and as a result, it will introduce a
new modeling methodology based on UML, supporting test

case generation, and applied in the context of Modern
Project Management (Agile).

III. METHODOLOGY

This section is divided as follows, first we cover the
conducted study and surveys about what UML diagrams are
used and which ones are the less known. in the second part,
a model-based test case generation technique based on those
most used UML diagrams is introduced. The third and final
part of the methodology is dedicated to the conjunction of
the first two contributions (diagrams, testing) with the Agile
Framework Scrum. The final approach will be called
Scrum-UML-TCG.

A. A Selection of the most used UML diagrams

1) Population Identification

The target population of the conducted study consists of
the following UML sources: books, tools, course, and
tutorials as well as a personal opinion survey of both
academics and industrial practitioners in order to figure out
which parts of UML they know, which parts they use and
which parts they have never heard of or used.

Data Inclusion and Exclusion Criteria: For all the
chosen sources, only sources concerning UML 2.0 or newer
versions are included.

Books: when faced with multiple editions of the same
book, only the last one is opted for. Moreover, books
without ISBN are excluded from the study.

Tools: Only modeling tools specific to UML are
included, both commercial and non-commercial ones, the
rest is all excluded

Courses: university courses concerning IT studies in
different languages are included (English, French, Italian
and Spanish)

Tutorials: the study considered tutorials available online
as written documents and also videos (how to videos).
Screen recording-based tutorials and interactive tutorials are
excluded altogether

2) Process description

The study followed different data collection processes
for the different sources we have:

Books: Amazon website and its search form was used to
look for UML related books under the category of
"Computers & Technology". Experiments with several
search combinations of strings were tried to find out the
search string with the highest number of items in the results,
that string turned out to be "UML 2" with a result of 2726
books.

Search results were then filtered based on the inclusion
exclusion criteria explained above. Finally, 30 books were
collected and analyzed, the list of the selected books is
shown in Fig. 1[3]

Title Edition Author(s) Year Publisher
ML 20 in a Nutshell st Pione, Piman 2005 OReilly Media Inc.
The Elements of UML 2.0 Style st Ambler 2005 Sambridge University
Sams Teach Yourself UML in 24 Hours 3rd Schmuller 2004 Sams Publishing
@ UML 2 Certification Guide: & Exams 15t Welkiens, Oestereich 2006 Moygan Kaufmann
2 UML Distilled: A Brief Guide to the Standard Object Modeling Language 3rd Fowler 2003 Addison-Wesley
© Leaming UML 2.0 st Miles, Hamilton 2006 O'Reilly Media Inc.
§ UML 2 for Dummies 15t Chonoles, Schardt 2003 Wiley Publishing Inc.
F uML 2 Tookt 2nd Eriksson, Penker, Lyons, Fado 2004 Wiley Publishing Inc.
2 UML 2.0 in Action 15t Grassle, Baumann, Baumann 2005 Pack! Publishing Ltd
3 UML Bible 15t Pender 2003 Wiley Publishing Inc.
S UML Demystified 1st Kimmel 2005 McGraw-Hill
UML for the IT Business Analyst 18t Podeswa 2005 Muska & Lipman Pub
Verification and Validation for Quality of UML 2.0 Models 15t Unhelkar 2005 John Wiley & Sons
The Unified Modeling Language Reference Manual 2nd Rumbaugh, Jacobson, Booch 2005 Addison-Wesley
The Unified Modeling Language User Guide 2nd__Booch, Rumbaugh, Jacobson _ 2005 Addison-Wesley
‘Object-Oriented Software Engineering Using UML, Patterns and Java 3rd _ Bruegge, Dutoit 2010 Prentice Hall

System Analysis & Design with UML version 2.0

i An Object-Oriented Approach

£ UML 2 and the Unified Process:

2 Practical Object-Oriented Analysis & Design

= UML 2 Semantics and Applications st Lano
Object-Oriented Analysis & Design: -

2 Understanding System Development with UML 2.0 3 Sy

£ Using UML: Software Engineering with Objects and Components 2nd

3rd Dennis, Wixom, Tegarden 2009 John Wiley & Sons.

2nd Arlow, Neustadt 2005 Addison-Wesley
2009 John Wiley & Sons.
2005 John Wiley & Sons.

Stevens, Pooley 2006 Addison-Wesley

8 UML 2 Pour les bases de donnees st Soutou 2007 Editions Eyrolles

‘@ Fast Track UML 2.0 st Scott 2004 Apress Media LLC

5 Modek-Driven Dovelopment with Exccutablo UML 15t Miicev 2009 Wiley Publishing Inc.

Gousset, Keller,

§ Professional Application Lifecycle Management with Visual Studio 2010 15t Coumer e wooawara 2910 Wiley Publishing Inc.

"} Software Modeling and Design 1st Gomaa Fri) (S SO

H

é Systems Engineering with SysML UML: Modeling, Analysis, Design 1st Weilkiens 2006 :f:;?::;::‘"’"’“"
Use Case Driven Object Modeling with UML: Theory and Practice 15t Rosenberg, Stephens 2007 Apress Media LLC
Management of The Object-Oriented Development Process 18t Li, Roussev 2006 Idea Group Inc.
Real-Time Object Uniform Design Methodology with UML st Duc 2007 Springer

Fig. 1. UML Books Considered

Tools: Wikipedia page "List of Unified Modeling
Langue Tools" contains 49 UML tools. Moreover, just like
with Amazon search form, Internet search was also carried
out using Google and with a combination of strings ("UML
tools list", "UML tools"...). Each tool in the resulting list of
tools was then compared against the inclusion criteria and
then downloaded and installed from its official website. At
the end, 20 different tools were collected and analyzed.
Fig.2 [3] shows this complete list.

Name Release Year Licence Web Site
Altova Umodel 2012 Commercial (Enterprise — Trial) www.altova.com/umodel.htmi
Artisan Studio 74 2012 Commercial (Trial) vaww.atego.com/products/artisan-studio/
Astah 6.6 2012 Commercial (Community Edition) - astah.net/
Borland Together 120 2012 Commercial (Trial) www.borland.com/products/together/
BOUML 643 2013 Commercial (Viewer - Limited) ~ www.bouml.fr/
Enterprise Architect 10 2013 Commercial (Trial 30 days) www.spanxsystems.eu/enterprisearchitect/
1BM Rational Rhapsody Modeler 75 2009 Free vaww-01.ibm.com/software/awdtools/modeler/
IBM Rational SW Architect 85.1 2012 Commercial (Trial 30 days) www-01.ibm.com/software/awdtools/swarchitect/
MagicDraw 17.03 2012 Commercial (Enterprise — Trial) https://www.magicdraw.com/
Metamill 6.1 2012 Commercial (Trial) www.metamill.com/
Modelio 221 2012 Free sourceforge.net/projects/modeliouml/
Open Modelsphere 32 2012 Free www.modelsphere.org/
Papyrus 09.1 2012 Free (Eclipse Plug in) vaww.eclipse.org/papyrus/
Poseidon for UML 8 2009 C ial (C ity Edition) /
Power Designer 16.1 2012 Commercial (Trial) waww.sybase.com/products/
RedKoda 307 2012 C ial (Ce ity Edition) com/
Software Ideas Modeler 5.82 2013 Free www softwareideas.net/
StarUML 5.0.2.1570 2006 Free staruml.sourceforge.net/
Violet 0.21.1 2007 Free sourceforge.net/projects/violet/
Visual Paradigm 10.1 2013 C ial (C ity Edition) www.visual-paradigm.

Fig. 2. UML Tools Considered

Courses: Usage of the following online search criteria
"UML course", "UML lecture" and "UML university
course" resulted in several university courses satisfying the
inclusion criteria.

However, it was almost impossible to cover all the slides of
the lectures and sometimes the material was not available to
public, only the table of content of the lessons was uploaded
online. Finally, 22 different university courses were
collected and analyzed as shown in Fig.3 [3]

Lecturer Country Title Year
Afsarmanesh Netherlands Project Analysis 2012
De Angelis Italy Lab. Ingegneria del SW 2012/13
Ciancarini, lorio Italy Lab. Ingegneria del SW 2012/13
Vincent Australia System Analysis and Modeling 2012/13
Casalicchio Italy Progettazione SW 2009/10
Gérard France UML
Prié France Systémes d'information méthodes avancées 201112
Felici UK Software Engineering with Objects and Components 201112
Siebers UK Object Oriented Systems 2012/13
Varrd Hungary Modellalapu szoftvertervezés 2012
Lehre Germany Softwaretechnik 2012/13
Rumpe Germany Modellbasierte Softwareentwicklung 201112
Correo, Rossi Argentina Uml Basico
Brambilla Italy Ingegneria del SW 2012/13
Alkan Turkey Object Oriented Software Engineering 2012/13
Farrow UK Software Engineering 2012/13
Easterbrook Canada Engineering Large SW Systems 2012
Negre France iérie des] d'Ir ion 2012/13
Sellares Spain Enginyeria del Software 2008/09
Jezequel France Approche objet pour le développement de logiciels par objets avec UML
Turgut us Software Engineering | 2009
Cheng us Advanced Software Engineering 2013

Fig. 3. UML Courses Considered

Tutorials: At first, three websites were selected to
analyze tutorials from, later on, this data was integrated with
tutorials resulting from the Google strings "UML Tutorials"
and "UML guide".

Finally, 18 tutorials were collected and analyzed. Fig.4 [3]
shows the complete tutorials list

Author / Source Title Web Site
Allen Holub Allen Holub's UML Quick F www.holub. i html
Analisi-disegno Introduzione a UML www.analisi-disegno.com/uml/uml.htm
Crag Systems A UML Tutorial Introduction WWW. co.uk/umi_tutori htm
devmentor UML Guide v2.1 devmentor.org/references/uml/uml.php
Dumke UML Tutorial WWw-ivs.cs.uni-magdeburg.de/~dumke/UML/index.htm
Embarcadero Practical UML: A Hands-On Infroduction . .. agero.comvarticiers1863

for Developers

HTML.it Guida UML www.html.it/guide/guida-uml/
John Deacon ?:Ler::rer's ClideloMEZALME WWW net/UML/UML _/ JML_Appendix.asp
lemiffe Reference Guide for UML 2.0 www.lemiffe.com/wp-content/uploads/2008/12/umi2.pdf
New Think Tank Video Tutorials www.newthinktank.com/2012/11/
Online Teach UML Training www.online-teach.com/u-m-|.php
Parlezuml UML Tutorial www.codemanship.co.uk/parlezuml/

A Beginners Guide to The Unified
Modeling Language (UML)
What is UML? www. i diagrams/

Richard Botting

www.csci.csusb.edu/dick/cs201/uml.html

SmartDraw
Sparx Systems

UML 2 Tutorial WWW. com html

JML-2.0-Tutorial.pdf

Storrle & Knapp Unified Modeling Language 2.0 www.pst.ifi.imu.
UML, le langage de modélisation objet
unifié

UML 2.5 Diagrams Overview www.uml-di org/uml-25-di html

Uml.free uml.free.fr/index-cours.html

uml-diagrams

Fig.4. UML Tutorials Considered

3) Results of study

After data collection, which was detailed in process
description, the analysis was finally performed with the
following interpretations in mind:

[1 A diagram is "widely used" is it present in
90% or more of the sources

[1 A diagram is "scarcely used" if it is present
in the 40% or less of the sources

[1 Presence of some non-defined cases (grey
zones)

Section 3.1 describes in detail the results of the findings
regarding the levels of usage of the UML diagrams:

a) Levels of Usage of the UML diagrams

Fig. 5. [3] summarizes the levels of usage of the UML
diagrams in the various sources: books, courses, tutorials,
tools, and the totality of use disregarding the kind

The widely used diagrams are (listed according to their
usage level): class (present in 100% of the sources), activity,

sequence, use cases and state machine diagrams. Class
diagrams are considered as the main building block of the
UML and therefore ranking first in the list shouldn't be
surprising, also note that all the widely used diagrams were
present in the early versions of UML (1.x versions).

The scarcely used diagrams on the other hand are,
timing, interaction overview and profile all of which were
not present in the early versions of UML (1.x). Moreover,
the profile diagram appeared only in version 2.2. Profile and
timing diagrams; low usage is due to both their late
appearance and their limited scope. As for interaction
overview, it is quite complex and can be replaced by
sequence and activity diagrams which are widely used and
relatively simple

UML Diagram Book Guide Book Spec Book Tot Tool Course Tutorial _All Sources
Class 100% 100% 100% 100% 100% 100% 100%
Activity 100% 93% 97% 100% 95% 100% 98%
Sequence 100% 93% 97% 100% 100% 89% 97%
Use Case 100% 93% 97% 100% 95% 89% 96%
State Machine 100% 93% 97% 100% 95% 89% 96%
Communication 100% 80% 90% 90% 59% 89% 82%
Component 93% 80% 87% 85% 59% 89% 80%
Deployment 93% 80% 87% 90% 55% 89% 80%
Object 93% 80% 87% 70% 55% 67% 71%
Package 100% 79% 89% 65% 52% 67% 70%
Composite Structure 87% 60% 73% 80% 14% 33% 52%
Timing 87% 53% 70% 40% 5% 33% 40%
Interaction Overview 80% 53% 67% 45% 5% 28% 39%
Profile 7% 13% 10% 30% 0% 6% 1%

Book Guide

Book Tot = All books

= UML Notation Guides, Book Spec = Software Engineering books based on UML,
Dashed lines represent the 40% and 60% thresholds

Fig. 5. Usage levels of UML diagrams

This study made it possible to determine the level of
usage of all the UML diagrams in its latest specification,
thus, we now have a solid proof from both academics and IT
industries of which diagrams to include in the modeling
approach and which ones to exclude.

The chosen diagrams to be integrated in our proposed
approach are the five most used diagrams: Class, Activity,
Sequence, Use Case, State Machine.

B. UML Test Case Generation

Now that we have a set of "widely used" UML diagrams,
those will be used in a process other than modeling, which is
contribution into the testing phase, and more specifically, Test
Case Generation (TCG).

Test Cases are a set of conditions used to ensure that
whatever software being implemented satisfies all the
stakeholders' expectations and requirements. Test cases work
by trying every combination of an action and every possible
execution path of a program. TCs differ based on the specified
and agreed upon criteria, the latter are a set of rules and
guidelines testers are supposed to stick to and measure code
satisfaction levels against them.

There are various test generation techniques as mentioned
in the introduction. In this paper, we will adopt a UML-Based
Test Generation Technique, and the following explanations
concern Class, Activity, Sequence, Use Case and State
Machine diagrams

1) TCG from Class Diagram

Class diagram's specifications contain the following
constructs: Associations, Multiplicities, Inheritance, Other
Relationships, Class Attributes

From these constructs, three testing criteria can be
deduced: Association End Multiplicity (AEM),
Generalization (GN), Class Attributes (CA).

These deduced criteria will be formulated as a set of
representative values, we then apply a cartesian product
against each value set so that all the possible test combinations
are generated. TCs are then expressed accordingly and based
on the modeled Class diagram (assuming it is correct) the
valid and the invalid tests will be identified. The last step is to
test the program against the implemented test suites

2) TCG from Activity Diagram

This is by far, the most used model when generating test
cases, it consists in turning the Activity Diagram into a graph
called The Activity Diagram Graph (ADG) from which Test
cases will be generated. Moreover, there are different
coverage models with different coverage levels when trying to
generate TCs from an Activity diagram:

Node Coverage: The simplest model, it works by
considering only the nodes in the diagram. If, for example
we're generating a TC from a diagram with two final nodes,
then at least two different test cases will be generated

Edge Coverage: As opposed to considering nodes, this
model traverse the diagram and examine only the edges of the
graph in order to generate the possible test cases

Specified-Path Coverage: also called Edge-Pair
coverage, it covers the testing requirements fully which makes
this model the most complete one. And It generates all the
potential outputs/outcomes of the software system to be met
in the most appropriate way.

Moreover, another way of generating cases is the
combination of the Activity diagrams with the sequence
diagrams, this will be detailed later in this paper.

3) TCG from Sequence Diagram

A sequence diagram contains and allows extraction of
multiple testing criteria, out of which we list is the All-
Message Paths (AMP) criterion. AMP tests all possible
combinations of every message passing figuring in a
specific sequence diagram [6]. The workflow can be
expressed in this fashion: creation of test sets for every
sequence diagram, and then verification that all possible
message paths are being executed correctly and in the right
order.

Fig.1 [4] shows a sequence diagram for an online voting
system and Fig.2 [4] shows the corresponding Sequence
Diagram Graph (SDG).

Administrator Controlier

Voter

‘ }(Mnmm id during Login s1.m1 |

Invalid voter |d eject() 82 m2]

Ak tor Confirmation 83.m3}

I vofed Already issue message and Ex10) §5.in7

gives candidate names s7.m9
Ballot page is displayed ext 58.m10)

Fig 1: Sequence Diagram for Online Voting System

(88 Il —~ 1 ®)
N’ { S§ 1= p— N
T e

(s6)

(87)

(ss y—o(/S?L—o(/S\h’(

i not voted requasts candidate names 56 m8

Verfy Status of voter 54, m4 '
T

I

Select Desired candidate hame s9,m11 ' '
' Ehcppted candidate name is ueuqngﬁw
Sends confirmation page 811, m13 N

Fig. 2: Correspondi;g Sequence Diagvfam Graph

Back to the conjunction of Activity and Sequence. First,
both diagrams must be converted to their corresponding

testing Graphs: Activity Diagram Graph (ADG) and

Sequence Diagram Graph (SDQG) respectively.

Then a combination of the two generated Graphs to form a
System Testing Graph is done in order to generate TCs.

4) TCG from Use Case Diagram

For the fourth most used UML diagram, one way of
generating test cases is by performing a transformation of
the diagram into a graph called Use Case Diagram Graph
(UDG). This graph allows identification of the single path

use case scenario which covers the different actions

represented in the corresponding use case entirely.

Regardless of the usefulness of the Use Case Diagram
Graph, it remains insufficient because it doesn't cover
testing entirely due to the lack of information. Therefore,
Activity diagrams and use case diagrams better be combined
for a more efficient and complete test case generation.

5) TCG from State Machine Diagram

Test case generation from this diagram ensure the
internal behaviors of the objects are being tested, this is
thanks to the nature of State machine diagrams in that they
model all possible scenarios for all the present objects in the
analyzed system. Just like Sequence diagrams and Activity
diagrams, State machine diagrams can also be converted to
their corresponding State Chart Diagram Graph (SMDG).

Still in the Online Voting System, Fig.3 [4] shows a

State Machine diagram and Fig.4 [4] shows the
corresponding State Machine Diagram Graph (SMDG).

i

[Registraton

Pettive
e | I

Login

L
[Cast Vote] l Already voted then Ejec |J
—L—

1

[View Result I

o
Fig 3: State Machine Diagram for Online Voting System

k-
"

-

(sc1a

i .

Fa—

, D

/

Fig 4: Corresponding State Machine Diagram Graph for Online Voting System

C. SCRUM-UML

1) Overview of the Scum-UML Modeling Approach

This is the final step in our proposed methodology,
following the selection of UML diagrams, the generation of
test cases from those diagrams, we are now going to apply
all of this in the context of modern project management,
precisely with Agile and under the most popular and used
framework which is Agile. This part of the methodology
follows the ideology of scrum and UML. And it maps the
UML modeling technologies (in our case only the 5 selected
diagrams with their test cases) onto the scrum practices.

The development process of the Scrum-UML approach
is expressed as follows [5]:
Process = lifecycle + activity + artifact + role

The lifecycle mentioned is divided into two phases:
[1 Requirement Analysis
[1 Sprint with UML Modeling

Table 1 [5] shows how UML modeling technologies and
scrum practices are being mapped into these two phases.
In Agile in general and in Scrum particularly, the product
backlog is the first thing to be established, the backlog is an
unordered list containing features and functionalities which
need to be prioritized by the product owner and shifted to
the "to-do" section in the board. The thing is that there is no
method in Scrum which dictates how to conduct analysis of
the product backlog and establish it. Fortunately, analysis of
software requirements can be the key to successfully start
Agile software development.

Scrum-UML introduces use case modeling technology
into the requirement analysis phase, and therefore its name
becomes "Agile requirement analysis". For sprints, when
these are being implemented, the project organization and
management framework based on scrum is followed.

Moreover, UML modeling's static and dynamic
modeling technologies chosen earlier in 3.1 are applied.
This phase in the process Lifecyle is called Sprint with
UML modeling.

Fig.1 [5] shows the activities and artifacts of both Agile
requirement Analysis and Sprint with UML Modeling
phases. In the first phase, there are three activities not shown
in the figure, but they will be discussed later (Establishing
use case model, converting use case to user story, Making
product backlog). For the artifacts of phase 1, we have
product backlog and use case models.

Sprint with UML modeling is implemented via rounds of
iterations which can be called sprints. In every sprint, the
team is required to deliver a "working piece of software" or
"potentially shippable product increment". Each sprint
begins with a planning meeting where the work to be done
is selected by the team, the sprint concludes with a sprint
retrospective where the work done in the sprint duration is
evaluated and learned from it to better carry-on upcoming

sprints, in-between, focus is shifted towards working on
UML modeling technology.

Scrum-UML is inspired by Scrum as well as UML
modeling and object-oriented analysis, thus, it’s both use
case and user story driven, architecture-centric, iterative,

and incremental.

The approach is use case and user story driven, since use
case driven development has proven its efficiency in
offering excellent solutions to inaccurate, incomplete, and
inconsistent requirements. For user stories, they are essential
in Agile practices.

Thanks to the mentioned advantages of adopting a use case
driven approach, use cases will be converted to user stories

(detailed later)

TABLE MAPPING FROM UML MODELING AND SCRUM INTO SCRUM:UML MODELING APPROACH

Serum-UML Modelng Serum methodology UML modelng
Approach
Agil Requirement Analysis | Nothing abouthowto implement | Use case modeling
butthe productbaklog
Sprin with UML Modeling | Organization and management | Staic and dynamic modeling inchuding al
framework ofhe projct ofthe modelng echnologis
Sprint with UML Modeling
Sprint Implementation
\\.i\h ; :
Agl]c\R’cT]lvurcnmll | — UML modeling technology
Analysis Mecting Software
| T Product) Product
Product Backlog Sprint Backlog ’ Increment
| \ 77",,‘ Sprint Review [phase of life cycle

Use Case Model

| Initial Software — =
Architecture ‘ 4 artifact

activity

Figure 1. Process of the Scrum-UML Modeling Approach

2) Process of the Scrum-UML Modeling Approach

This section explains in detail the development process
of the Scrum-UML modeling approach including roles,
activities, artifacts, and implementations

a) Agile Requirements Analysis

Englobes both, use case modeling of UML into the Agile
requirement analysis phases. Usually the product owner,
team and the rest of the stakeholders contribute collectively
to this phase. The outcome of this phase is a product
backlog and Use Case Models. As stated earlier, this phase
involves three activities described as follows:

1. Establishing use case model

We use UML modeling as described in its specification
and come up with a use case model as an output.
Establishing use case model is a process of analyzing
software requirements from the end user's perspective. The
boundary and range of the system is the first thing which
must be determined, then comes recognizing the actors in
the determined system, actors can be human or other actors
(servers, API...). The last two things are the analysis and
identification of the use cases corresponding to the
previously determined actors, and the mapping between the
actors and their use cases into what's called "relations".

2. Converting use case to user story

User stories, -which are short descriptions of what users
might want the system to do and they are expressed using
this template "Asa Iwantto Inorderto -
are the predominant way of expressing features on the
product backlog for an Agile-based team. During use case
modeling, the completed use case diagrams should be
converted to user stories. So, at the end of this phase, we
will have use case models containing UC diagrams, Activity
diagrams for detailed specifications of the use cases. And
many user stories.

Use cases and User stories are essential in requirements
analysis. User stories describe what's desired from the
system and it's expressed from end users' perspectives. As
for use cases, they are descriptions of functionalities the
system will certainly provide, and it's also analyzed from the
end user's perspective.

3. Making product backlog

It is the product owner's responsibility to communicate
to the rest of the team which features should the end product
have. And it's his responsibility to prioritize product backlog
according to what he sees most fit (dependencies, risks,
priorities...). His job is very demanding and requires
availability, business savvy and communication skills. In
Scrum-UML, the generated use case model and the
generation process itself help reduce the complexity of the
product owner's job.

More specifically, a user story is a feature in the
product backlog and it’s also a use case outcome, converted
from use case diagrams. All that's left for the product owner
to do is to prioritize these user stories whether from the
dependencies between user stories or the relations between
use cases.

Product backlogs now will become different from the
traditional ones present in Scrum alone. Table. 2 shows
product backlog and how to describe user stories in it.

Even though Scrum-UML embraces changes, requirements
can be changed only outside the sprints, once the team starts
a sprint, it keeps focusing entirely on achieving sprint's
goals. Therefore, use cases models and product backlog
can't be changed at all at that time.

b) Sprint with UML Modeling

Scrum-UML process's modeling approach is iterative
and incremental, projects progress via a series of
predetermined sprints with a duration varying from 1 to 4

works (ideally 2 weeks).
TABLE 2 SEVERAL ITEMS FROM THE PRODUCT BACKLOG OF THE GUARANTEE MANAGEMENT SYSTEM
D Name Imp | Est How to demo Notes
1.1 | guaranteed loan | 110 4 Customer logins into the system; Open the guaranteed loan Classifying these
application application screen, Fill in personal information, including information

borrower, guarantee, mortgage, loan information etc.; Submit
information and waiting.

reasonably using
paging techniques

1.2 | customer 70 8
evaluation

Evaluation managementer logins into the system; Choose cases
need to be evaluated, and examine the detail information; Choose
function of adding evaluation report to open the corresponding
screen; Compile the report and submit.

When implementing a sprint, features of the user stories
from the product backlog are being coded, test case
generations are also being generated from the five UML
diagrams and tests are conducted to the written code.

At the end of each sprint, tested and agreed upon
increments are integrated into the evolving product or
system. Sprint with UML modeling contains three activities
described as follows:

1. Sprint planning meeting

Supervised by the product owner, inputs of this activity
are Use case models and product backlog established earlier,
During the meeting, the product owner picks the most
important features to be implemented. The rest of the team
starts asking as many questions as possible to better
understand the features from the product owner, then the
entire team starts doing estimation of how much time these
high-level user stories will take. Estimation can be absolute
(estimating each user story independently) or relative (story
points) and there are dedicated techniques like Poker
Planning, Card Sorting....

This discussion is supported by use case models such as
user stories, use case diagrams and activity diagrams. Use
case models make the planning meeting smoother and more
efficient

Place, time of demonstration, and daily standup
meetings should be fixed in this meeting.

2. Sprint implementation

During the sprint, there is a collectively done critical
step which is Sprint breakdown. in this phase, the team
does what's called "Tasking out" the sprints, that is dividing
every user story into very small chunks of tasks. It also
estimates how many stories points each task is supposed to
take in order to complete. In Agile, teams are self-organized
and self-managed, therefore, every team member contributes
in whatever way they can to complete the sprint's goals and
they independently decide to implement a set of tasks and
assign them to themselves. Fig. 6 shows an example of
Sprint Planning.

Asa HS student, I want to write my questions and get answers so

As an intemational student, T want to be aware of the visa process 0
know what I need to prepare.

USER STORY

HOURS ESTIMATE ASSIGNED TO

Populate the database with Q&AS
Create Ul for FAQs page

)

Create form page for questions
Create chatbot 2 Omar
that I can get an explanation for my special case
Configure chatbot
Create APIs

Link backend to frontend

)

Write tests
Run tests 2 Omar
Create staff portal (with login) 3 Soufiane
Create staff table 2 Omar

Create ML tool to clean questions data (remove duplicates) to group
them and display number of occurences 9 Ghita

As a saff member, I want to answer some FAQs once and for all 5o that I Create questions management page P
don't have 1o re-answer duplicate questions

Create answer box and add to the FAQ button 2 Omar
Create FAQ management page (Re-order/add/edit..)

1
Write tests 4 Soufiane
Run tests 2

3

Create Intemationals page
Create form 1o input intemational students info (Select country button...) 2 Ghita
Web scraping to get visa requirements from embassy websites 6 Omar
Populate database with requirements info (from web scraping) 2 Soufiane
Display corresponding visa requirements 2 Omar
Write tests 4 Ghita
Run tests 1 Soufiane

UML technologies are applied when sprint
implementing. Both static and dynamic views of the system
are analyzed and then coding can be accomplished
correspondingly. For the static view of the system, Class
diagrams are the ones used while Sequence, Activity and
State Machine diagrams are used to describe the dynamic
view. In order to prevent Agile and Programming from
taking way more time than necessary, UML diagrams are
not drawn using formal modeling tools, instead, they are
drawn on white papers or even papers.

3. Sprint retrospective

Conducted at the end of each sprint, in the Sprint
retrospective, the new functionalities are demonstrated
primarily to the product owner and the rest of the
stakeholders whose feedbacks are welcomed. The more
participation of stakeholders in this retrospective, the more
feedback will be returned. The sprint's current deliverable is
compared against what was agreed upon in the sprint
planning meeting, this activity results in revising or adding
more items to the product backlog.

The team is encouraged to reflect on how the sprint had
been for them in terms of roadblocks, satisfaction, and
suggestions to improve upcoming iterations.

IV. FUTURE WORK

The outcomes of this research are meant to contribute in
both academia as well as IT industry. Since what we are
proposing is the first of its kind, there are no software tools
which are built to support exactly what we came up with;
modeling, testing, modern project management all under one
umbrella, instead there are independent tools focusing on just
one area; Either they are built for modeling (PowerAMC
Designer, Draw.io...) Testing, or management (Atlassians

Jira, Trello...). What we want to do in work is beyond just
research. We will develop a software tool (either web-based
or a desktop application) encompassing all the features and
functionalities described in our methodology, which will
significantly serve and optimize the work of IT industry
personnel, because instead of mastering multiple tools and
switching from them continuously, the software tool will
include everything needed in just one place.

V. CONCLUSION

This paper presented a new modeling approach
based on already existing solutions. The methodology is
divided into three major pillars; First, an investigation of
four kinds of sources: books, tools, tutorials, and courses
which led to a certain determination of the level of usage of
the UML diagrams. Based on this study, 5 diagrams: Class,
Activity, Sequence, Use Case and State Machine were
judged to be the most popular out of the 14 UML diagrams
and therefore these diagrams were chosen to be part of our
modeling methodology. Secondly, we presented model-
based test case generation techniques from the 5 Unified
Modeling Language diagrams that were chosen earlier in
order to find out all the execution paths to be tested. Finally,
a conjunction of the Scrum with the UML and Test Case
Generation was established. This has enabled mapping of
modeling and testing with Modern Project Management
practices (Continuous Delivery, Agility, Sprints, Change
Control) instead of the heavy-weight traditional project
management environments.

VI. REFERENCES

[1] UML Revision Task Force. OMG Unified Modeling Language (OMG
UML), Superstructure, V2.4.1, 2011.

[2] G.Reggio, M. Leotta, and F. Ricca. Who knows/uses what of the UML:
A personal opinion survey. Submitted to /7¢h International Conference
on Model Driven Engineering Languages and Systems (MoDELS
2014),2014.

[3] Gianna Reggio, Maurizio Leotta, Filippo Ricca, Diego Clerissi,
“What Are the Used UML Diagram Constructs? A Document and Tool
Analysis Study covering Activity and Use Case Diagrams”

[4] Khurana, Namita, and R.S. Chillar, “Test Case Generation and
Optimization Using UML Models and Genetic Algorithm”,
ScienceDirect, 1 Jan. 2015.

[5] Quan Wei, Guo Danwei, Xue Yaohong, Fan Jingtao, Han Cheng, Jiang
Zhengang, “Research on Software Development Process Conjunction
of Scrum and UML Modeling.

[6] Wang, Y., & Zheng, M. (n,d.). “Test Case Generation from UML
Models Retrieved from mzheng@uwlax.edu,”

[7] Bouchaib Falah, Ghita El AlaouiTalibi, Zineb Bouayad “Test Case
Generation From Unified Modeling Language Diagrams”

