

UTS: A new modeling methodology with UML and
Test case generation, applied in conjunction with

Scrum framework

Bouchaib Falah
School of Science and Engineering

Al Akhawayn University
Ifrane, Morocco
b.falah@aui.ma

Soufiane Karroumi
School of Science and Engineering

Al Akhawayn University
Ifrane, Morocco

s.karroumi@aui.ma

Omar Lahkim
School of Science and Engineering

Al Akhawayn University
Ifrane, Morocco

o.lahkim@aui.ma

Abstract—The software engineering discipline involves
numerous chained processes, the bare minimum being
requirements identification, analysis and design,
implementation, testing and deployment. These processes can be
tackled following different traditional project management
methods and approaches, namely the Waterfall, V-Model….
The problems of these linear approaches with the listed
processes are the impossibility to generate test cases at an early
stage of the lifecycle, with the delayed testing process at later
stages, changes become very costly both in terms of budget and
human resources.

This paper introduces a standalone modeling methodology
which encompasses the most used UML diagrams, a model-
based test case generation technique all applied Scrum
Framework, The most used and popular modern project
management framework

Keywords—UML, Test Case Generation, Agile, Scrum,
Project Management

I. INTRODUCTION

 Even with UML being the industry standard for software
modeling and design, not all the UML diagrams in its
metamodel specification are being used, often times than
not, researchers and engineers find themselves using just a
limited set of diagrams out of all 14 diagrams in the Unified
Modeling Language set [1]. On his blog I. Jacobson states
“For 80% of all software only 20% of UML is needed”. The
large UML set of diagrams might confuse beginners in the
modeling process and more time will be spent on deciding
which diagrams to use for what problems, which is not
practical especially knowing how tight project schedules can
be.
 Another issue with UML is support of testing, this latter
is a critical phase in the lifecycle of any software system.
Every software needs to go through the testing phase in
order to evaluate the level of conformance of the actual
software output with the expected output which was initially
described in the requirements. One way of doing so is by
using Test Cases, which can also be called Test Suites, some
of the various test case generation techniques are:

• Model-based Testing
• Goal-oriented approach
• Specification-based approach
• Source-code-based approach

Even with a proper, filtered set of UML diagrams and a
good model-based test cases generation technique, if we are
still in the context of traditional software management, the
outcome will not be as fruitful. Traditional software
development methods (V-Model…) are no longer suitable,
they are heavy-weight processes focusing more on the
industrialization and standardization. To deal with this
outdated methods, Agile development methodologies have
emerged and have drawn increasingly more attention
because of the way they handle the processes of software
projects.

For all the previously mentioned problems, this paper

presents a standalone modeling approach featuring:
• A selection of the most used UML diagrams -or

what could be referred to as “essential UML”-
containing only a small set of the diagrams and not
all 14 diagrams. The choice of which diagrams are
the most used and which ones are the less used is
based on an investigation of the following sources:
The books about the UML, IT UML University
courses, Tutorials, Tools for UML models
production, conducting a personal opinion survey
[2]: asking different roles (academics and
researchers, IT practitioners) about their usage,
which parts of UML they know and which they
have never used.

• Test case generation from UML diagrams: a
model-diagram-based testing technique, it will rely
on the previously selected UML diagrams (most
used ones) to generate test cases which are also
called test suites. This way, UML will be also used
for a purpose different than its origin and it will
start playing a significant role in testing phase too,
helping project team determine the conformance of
the test output with the described requirements, the
test case generation process will be shifted to
earlier steps of the software engineering process.

• A combination of Scrum -Agile framework-
with the chosen UML diagrams and their
corresponding test case generation techniques:
this is an attempt to map the UML modeling
technologies with the practices of the most popular

and used Agile framework, that is Scrum. This
combination is called the Scrum-UML modeling
approach and it is aimed to provide a modern
project management environment for the UML
modeling process; focus on rapid and frequent
deliverables or what can be called "A Working
Piece of Software".

This way, the modeling task will be done in an iterative
and an incremental manner alongside test case generations:
Software modelers will have "Essential UML" instead of the
entire UML diagrams collection, they will perform the
modeling process in an incremental manner as opposed to
traditional project management, and they will continuously
generate test cases for the slight improvements committed in
the multiple iterations.

II. RELATED WORK

 The importance of modeling and design in the successful
deployment of software projects is undeniable; hence there
has always been attempts to improve the modeling tools and
languages, especially the Unified Modeling Language.
Norman W. et al. introduced an extension of the UML
called The Unified Modeling Language for Interactive
Applications; it preserves the semantics of UML but adds
supports for UI design. Birgit et al. also proposed an
extension of the UML 2 Activity diagrams with Business
Process Goals and Performance Measures. However, both
these attempts focus on just one aspect of the UML diagram
and tries to improve it without dealing with UML as a whole
and trying to sort out which diagrams should the
propositions focus on the most.

 Additionally, Gianna et al. from the University of
Genova conducted a study -on which this paper is based- to
determine which UML diagrams are the most used,
investigating both academic and IT industries as well. These
investigations covered books, courses, tutorials and tools
about UML, and the outcome of this research is just the
Usage Levels of UML diagrams, the results of this study
were not used anywhere else to introduce a new modeling
methodology whatsoever.

 Model-Based testing on the other hand has undergone
significant work, Bouchaib Falah et al. [7] has contributed
significantly by inspecting and evaluating some test case
generation techniques which led to TCG from Class, Use
Case, Activity and Sequence diagrams. Still, this value
proposition is thought of in the context of Traditional
project Management with all its already discussed
drawbacks.

 All in all, numerous attempts have been conducted in
UML, Testing and Project management, however, none of
the attempts has tried to investigate collectively all the work
done in those different disciplines in order to introduce a
whole new, standalone approach. This paper aims to collect
and combine separate work achieved in modeling, testing
and project management and as a result, it will introduce a
new modeling methodology based on UML, supporting test

case generation, and applied in the context of Modern
Project Management (Agile).

III. METHODOLOGY

 This section is divided as follows, first we cover the
conducted study and surveys about what UML diagrams are
used and which ones are the less known. in the second part,
a model-based test case generation technique based on those
most used UML diagrams is introduced. The third and final
part of the methodology is dedicated to the conjunction of
the first two contributions (diagrams, testing) with the Agile
Framework Scrum. The final approach will be called
Scrum-UML-TCG.

A. A Selection of the most used UML diagrams

1) Population Identification

 The target population of the conducted study consists of
the following UML sources: books, tools, course, and
tutorials as well as a personal opinion survey of both
academics and industrial practitioners in order to figure out
which parts of UML they know, which parts they use and
which parts they have never heard of or used.

 Data Inclusion and Exclusion Criteria: For all the
chosen sources, only sources concerning UML 2.0 or newer
versions are included.

 Books: when faced with multiple editions of the same
book, only the last one is opted for. Moreover, books
without ISBN are excluded from the study.

 Tools: Only modeling tools specific to UML are
included, both commercial and non-commercial ones, the
rest is all excluded

 Courses: university courses concerning IT studies in
different languages are included (English, French, Italian
and Spanish)

 Tutorials: the study considered tutorials available online
as written documents and also videos (how to videos).
Screen recording-based tutorials and interactive tutorials are
excluded altogether

2) Process description

 The study followed different data collection processes
for the different sources we have:

 Books: Amazon website and its search form was used to
look for UML related books under the category of
"Computers & Technology". Experiments with several
search combinations of strings were tried to find out the
search string with the highest number of items in the results,
that string turned out to be "UML 2" with a result of 2726
books.

Search results were then filtered based on the inclusion
exclusion criteria explained above. Finally, 30 books were
collected and analyzed, the list of the selected books is
shown in Fig. 1[3]

Tools: Wikipedia page "List of Unified Modeling
Langue Tools" contains 49 UML tools. Moreover, just like
with Amazon search form, Internet search was also carried
out using Google and with a combination of strings ("UML
tools list", "UML tools"…). Each tool in the resulting list of
tools was then compared against the inclusion criteria and
then downloaded and installed from its official website. At
the end, 20 different tools were collected and analyzed.
Fig.2 [3] shows this complete list.

 Courses: Usage of the following online search criteria
"UML course", "UML lecture" and "UML university
course" resulted in several university courses satisfying the
inclusion criteria.
However, it was almost impossible to cover all the slides of
the lectures and sometimes the material was not available to
public, only the table of content of the lessons was uploaded
online. Finally, 22 different university courses were
collected and analyzed as shown in Fig.3 [3]

 Tutorials: At first, three websites were selected to
analyze tutorials from, later on, this data was integrated with
tutorials resulting from the Google strings "UML Tutorials"
and "UML guide".
Finally, 18 tutorials were collected and analyzed. Fig.4 [3]
shows the complete tutorials list

3) Results of study

 After data collection, which was detailed in process
description, the analysis was finally performed with the
following interpretations in mind:

• A diagram is "widely used" is it present in
90% or more of the sources

• A diagram is "scarcely used" if it is present
in the 40% or less of the sources

• Presence of some non-defined cases (grey
zones)

 Section 3.1 describes in detail the results of the findings
regarding the levels of usage of the UML diagrams:

a) Levels of Usage of the UML diagrams

 Fig. 5. [3] summarizes the levels of usage of the UML
diagrams in the various sources: books, courses, tutorials,
tools, and the totality of use disregarding the kind

 The widely used diagrams are (listed according to their
usage level): class (present in 100% of the sources), activity,

sequence, use cases and state machine diagrams. Class
diagrams are considered as the main building block of the
UML and therefore ranking first in the list shouldn't be
surprising, also note that all the widely used diagrams were
present in the early versions of UML (1.x versions).

 The scarcely used diagrams on the other hand are,
timing, interaction overview and profile all of which were
not present in the early versions of UML (1.x). Moreover,
the profile diagram appeared only in version 2.2. Profile and
timing diagrams; low usage is due to both their late
appearance and their limited scope. As for interaction
overview, it is quite complex and can be replaced by
sequence and activity diagrams which are widely used and
relatively simple

 This study made it possible to determine the level of
usage of all the UML diagrams in its latest specification,
thus, we now have a solid proof from both academics and IT
industries of which diagrams to include in the modeling
approach and which ones to exclude.

 The chosen diagrams to be integrated in our proposed
approach are the five most used diagrams: Class, Activity,
Sequence, Use Case, State Machine.

B. UML Test Case Generation

Now that we have a set of "widely used" UML diagrams,
those will be used in a process other than modeling, which is
contribution into the testing phase, and more specifically, Test
Case Generation (TCG).

Test Cases are a set of conditions used to ensure that
whatever software being implemented satisfies all the
stakeholders' expectations and requirements. Test cases work
by trying every combination of an action and every possible
execution path of a program. TCs differ based on the specified
and agreed upon criteria, the latter are a set of rules and
guidelines testers are supposed to stick to and measure code
satisfaction levels against them.

There are various test generation techniques as mentioned
in the introduction. In this paper, we will adopt a UML-Based
Test Generation Technique, and the following explanations
concern Class, Activity, Sequence, Use Case and State
Machine diagrams

1) TCG from Class Diagram

Class diagram's specifications contain the following
constructs: Associations, Multiplicities, Inheritance, Other
Relationships, Class Attributes

From these constructs, three testing criteria can be
deduced: Association End Multiplicity (AEM),
Generalization (GN), Class Attributes (CA).

These deduced criteria will be formulated as a set of
representative values, we then apply a cartesian product
against each value set so that all the possible test combinations
are generated. TCs are then expressed accordingly and based
on the modeled Class diagram (assuming it is correct) the
valid and the invalid tests will be identified. The last step is to
test the program against the implemented test suites

2) TCG from Activity Diagram

This is by far, the most used model when generating test
cases, it consists in turning the Activity Diagram into a graph
called The Activity Diagram Graph (ADG) from which Test
cases will be generated. Moreover, there are different
coverage models with different coverage levels when trying to
generate TCs from an Activity diagram:

Node Coverage: The simplest model, it works by
considering only the nodes in the diagram. If, for example
we're generating a TC from a diagram with two final nodes,
then at least two different test cases will be generated

Edge Coverage: As opposed to considering nodes, this
model traverse the diagram and examine only the edges of the
graph in order to generate the possible test cases

Specified-Path Coverage: also called Edge-Pair
coverage, it covers the testing requirements fully which makes
this model the most complete one. And It generates all the
potential outputs/outcomes of the software system to be met
in the most appropriate way.

Moreover, another way of generating cases is the
combination of the Activity diagrams with the sequence
diagrams, this will be detailed later in this paper.

3) TCG from Sequence Diagram

 A sequence diagram contains and allows extraction of
multiple testing criteria, out of which we list is the All-
Message Paths (AMP) criterion. AMP tests all possible
combinations of every message passing figuring in a
specific sequence diagram [6]. The workflow can be
expressed in this fashion: creation of test sets for every
sequence diagram, and then verification that all possible
message paths are being executed correctly and in the right
order.

 Fig.1 [4] shows a sequence diagram for an online voting
system and Fig.2 [4] shows the corresponding Sequence
Diagram Graph (SDG).

 Back to the conjunction of Activity and Sequence. First,
both diagrams must be converted to their corresponding
testing Graphs: Activity Diagram Graph (ADG) and
Sequence Diagram Graph (SDG) respectively.
Then a combination of the two generated Graphs to form a
System Testing Graph is done in order to generate TCs.

4) TCG from Use Case Diagram

 For the fourth most used UML diagram, one way of
generating test cases is by performing a transformation of
the diagram into a graph called Use Case Diagram Graph
(UDG). This graph allows identification of the single path
use case scenario which covers the different actions
represented in the corresponding use case entirely.

 Regardless of the usefulness of the Use Case Diagram
Graph, it remains insufficient because it doesn't cover
testing entirely due to the lack of information. Therefore,
Activity diagrams and use case diagrams better be combined
for a more efficient and complete test case generation.

5) TCG from State Machine Diagram

 Test case generation from this diagram ensure the
internal behaviors of the objects are being tested, this is
thanks to the nature of State machine diagrams in that they
model all possible scenarios for all the present objects in the
analyzed system. Just like Sequence diagrams and Activity
diagrams, State machine diagrams can also be converted to
their corresponding State Chart Diagram Graph (SMDG).

 Still in the Online Voting System, Fig.3 [4] shows a
State Machine diagram and Fig.4 [4] shows the
corresponding State Machine Diagram Graph (SMDG).

C. SCRUM-UML

1) Overview of the Scum-UML Modeling Approach

 This is the final step in our proposed methodology,
following the selection of UML diagrams, the generation of
test cases from those diagrams, we are now going to apply
all of this in the context of modern project management,
precisely with Agile and under the most popular and used
framework which is Agile. This part of the methodology
follows the ideology of scrum and UML. And it maps the
UML modeling technologies (in our case only the 5 selected
diagrams with their test cases) onto the scrum practices.

 The development process of the Scrum-UML approach
is expressed as follows [5]:
 Process = lifecycle + activity + artifact + role

The lifecycle mentioned is divided into two phases:

• Requirement Analysis
• Sprint with UML Modeling

 Table 1 [5] shows how UML modeling technologies and
scrum practices are being mapped into these two phases.
In Agile in general and in Scrum particularly, the product
backlog is the first thing to be established, the backlog is an
unordered list containing features and functionalities which
need to be prioritized by the product owner and shifted to
the "to-do" section in the board. The thing is that there is no
method in Scrum which dictates how to conduct analysis of
the product backlog and establish it. Fortunately, analysis of
software requirements can be the key to successfully start
Agile software development.

 Scrum-UML introduces use case modeling technology
into the requirement analysis phase, and therefore its name
becomes "Agile requirement analysis". For sprints, when
these are being implemented, the project organization and
management framework based on scrum is followed.

 Moreover, UML modeling's static and dynamic
modeling technologies chosen earlier in 3.1 are applied.
This phase in the process Lifecyle is called Sprint with
UML modeling.

 Fig.1 [5] shows the activities and artifacts of both Agile
requirement Analysis and Sprint with UML Modeling
phases. In the first phase, there are three activities not shown
in the figure, but they will be discussed later (Establishing
use case model, converting use case to user story, Making
product backlog). For the artifacts of phase 1, we have
product backlog and use case models.
Sprint with UML modeling is implemented via rounds of
iterations which can be called sprints. In every sprint, the
team is required to deliver a "working piece of software" or
"potentially shippable product increment". Each sprint
begins with a planning meeting where the work to be done
is selected by the team, the sprint concludes with a sprint
retrospective where the work done in the sprint duration is
evaluated and learned from it to better carry-on upcoming

sprints, in-between, focus is shifted towards working on
UML modeling technology.

 Scrum-UML is inspired by Scrum as well as UML
modeling and object-oriented analysis, thus, it’s both use
case and user story driven, architecture-centric, iterative,
and incremental.

 The approach is use case and user story driven, since use
case driven development has proven its efficiency in
offering excellent solutions to inaccurate, incomplete, and
inconsistent requirements. For user stories, they are essential
in Agile practices.
Thanks to the mentioned advantages of adopting a use case
driven approach, use cases will be converted to user stories
(detailed later)

2) Process of the Scrum-UML Modeling Approach

 This section explains in detail the development process
of the Scrum-UML modeling approach including roles,
activities, artifacts, and implementations

a) Agile Requirements Analysis

 Englobes both, use case modeling of UML into the Agile
requirement analysis phases. Usually the product owner,
team and the rest of the stakeholders contribute collectively
to this phase. The outcome of this phase is a product
backlog and Use Case Models. As stated earlier, this phase
involves three activities described as follows:

1. Establishing use case model

We use UML modeling as described in its specification
and come up with a use case model as an output.
Establishing use case model is a process of analyzing
software requirements from the end user's perspective. The
boundary and range of the system is the first thing which
must be determined, then comes recognizing the actors in
the determined system, actors can be human or other actors
(servers, API…). The last two things are the analysis and
identification of the use cases corresponding to the
previously determined actors, and the mapping between the
actors and their use cases into what's called "relations".

2. Converting use case to user story

 User stories, -which are short descriptions of what users
might want the system to do and they are expressed using
this template "As a …. I want to ……. In order to ……."-
are the predominant way of expressing features on the
product backlog for an Agile-based team. During use case
modeling, the completed use case diagrams should be
converted to user stories. So, at the end of this phase, we
will have use case models containing UC diagrams, Activity
diagrams for detailed specifications of the use cases. And
many user stories.

Use cases and User stories are essential in requirements
analysis. User stories describe what's desired from the
system and it's expressed from end users' perspectives. As
for use cases, they are descriptions of functionalities the
system will certainly provide, and it's also analyzed from the
end user's perspective.

3. Making product backlog

It is the product owner's responsibility to communicate
to the rest of the team which features should the end product
have. And it's his responsibility to prioritize product backlog
according to what he sees most fit (dependencies, risks,
priorities…). His job is very demanding and requires
availability, business savvy and communication skills. In
Scrum-UML, the generated use case model and the
generation process itself help reduce the complexity of the
product owner's job.

More specifically, a user story is a feature in the
product backlog and it’s also a use case outcome, converted
from use case diagrams. All that's left for the product owner
to do is to prioritize these user stories whether from the
dependencies between user stories or the relations between
use cases.
Product backlogs now will become different from the
traditional ones present in Scrum alone. Table. 2 shows
product backlog and how to describe user stories in it.

Even though Scrum-UML embraces changes, requirements
can be changed only outside the sprints, once the team starts
a sprint, it keeps focusing entirely on achieving sprint's
goals. Therefore, use cases models and product backlog
can't be changed at all at that time.

b) Sprint with UML Modeling

 Scrum-UML process's modeling approach is iterative
and incremental, projects progress via a series of
predetermined sprints with a duration varying from 1 to 4
works (ideally 2 weeks).

 When implementing a sprint, features of the user stories
from the product backlog are being coded, test case
generations are also being generated from the five UML
diagrams and tests are conducted to the written code.

 At the end of each sprint, tested and agreed upon
increments are integrated into the evolving product or
system. Sprint with UML modeling contains three activities
described as follows:

1. Sprint planning meeting

 Supervised by the product owner, inputs of this activity
are Use case models and product backlog established earlier,
During the meeting, the product owner picks the most
important features to be implemented. The rest of the team
starts asking as many questions as possible to better
understand the features from the product owner, then the
entire team starts doing estimation of how much time these
high-level user stories will take. Estimation can be absolute
(estimating each user story independently) or relative (story
points) and there are dedicated techniques like Poker
Planning, Card Sorting….
 This discussion is supported by use case models such as
user stories, use case diagrams and activity diagrams. Use
case models make the planning meeting smoother and more
efficient
 Place, time of demonstration, and daily standup
meetings should be fixed in this meeting.

2. Sprint implementation

During the sprint, there is a collectively done critical
step which is Sprint breakdown. in this phase, the team
does what's called "Tasking out" the sprints, that is dividing
every user story into very small chunks of tasks. It also
estimates how many stories points each task is supposed to
take in order to complete. In Agile, teams are self-organized
and self-managed, therefore, every team member contributes
in whatever way they can to complete the sprint's goals and
they independently decide to implement a set of tasks and
assign them to themselves. Fig. 6 shows an example of
Sprint Planning.

UML technologies are applied when sprint

implementing. Both static and dynamic views of the system
are analyzed and then coding can be accomplished
correspondingly. For the static view of the system, Class
diagrams are the ones used while Sequence, Activity and
State Machine diagrams are used to describe the dynamic
view. In order to prevent Agile and Programming from
taking way more time than necessary, UML diagrams are
not drawn using formal modeling tools, instead, they are
drawn on white papers or even papers.

3. Sprint retrospective

 Conducted at the end of each sprint, in the Sprint
retrospective, the new functionalities are demonstrated
primarily to the product owner and the rest of the
stakeholders whose feedbacks are welcomed. The more
participation of stakeholders in this retrospective, the more
feedback will be returned. The sprint's current deliverable is
compared against what was agreed upon in the sprint
planning meeting, this activity results in revising or adding
more items to the product backlog.
 The team is encouraged to reflect on how the sprint had
been for them in terms of roadblocks, satisfaction, and
suggestions to improve upcoming iterations.

IV. FUTURE WORK

The outcomes of this research are meant to contribute in
both academia as well as IT industry. Since what we are
proposing is the first of its kind, there are no software tools
which are built to support exactly what we came up with;
modeling, testing, modern project management all under one
umbrella, instead there are independent tools focusing on just
one area; Either they are built for modeling (PowerAMC
Designer, Draw.io…) Testing, or management (Atlassians

Jira, Trello…). What we want to do in work is beyond just
research. We will develop a software tool (either web-based
or a desktop application) encompassing all the features and
functionalities described in our methodology, which will
significantly serve and optimize the work of IT industry
personnel, because instead of mastering multiple tools and
switching from them continuously, the software tool will
include everything needed in just one place.

V. CONCLUSION

This paper presented a new modeling approach
based on already existing solutions. The methodology is
divided into three major pillars; First, an investigation of
four kinds of sources: books, tools, tutorials, and courses
which led to a certain determination of the level of usage of
the UML diagrams. Based on this study, 5 diagrams: Class,
Activity, Sequence, Use Case and State Machine were
judged to be the most popular out of the 14 UML diagrams
and therefore these diagrams were chosen to be part of our
modeling methodology. Secondly, we presented model-
based test case generation techniques from the 5 Unified
Modeling Language diagrams that were chosen earlier in
order to find out all the execution paths to be tested. Finally,
a conjunction of the Scrum with the UML and Test Case
Generation was established. This has enabled mapping of
modeling and testing with Modern Project Management
practices (Continuous Delivery, Agility, Sprints, Change
Control) instead of the heavy-weight traditional project
management environments.

VI. REFERENCES

[1] UML Revision Task Force. OMG Unified Modeling Language (OMG
UML), Superstructure, V2.4.1, 2011.

[2] G. Reggio, M. Leotta, and F. Ricca. Who knows/uses what of the UML:
A personal opinion survey. Submitted to 17th International Conference
on Model Driven Engineering Languages and Systems (MoDELS
2014), 2014.

[3] Gianna Reggio, Maurizio Leotta, Filippo Ricca, Diego Clerissi,
“What Are the Used UML Diagram Constructs? A Document and Tool
Analysis Study covering Activity and Use Case Diagrams”

[4] Khurana, Namita, and R.S. Chillar, “Test Case Generation and
Optimization Using UML Models and Genetic Algorithm”,
ScienceDirect, 1 Jan. 2015.

[5] Quan Wei, Guo Danwei, Xue Yaohong, Fan Jingtao, Han Cheng, Jiang
Zhengang, “Research on Software Development Process Conjunction
of Scrum and UML Modeling.

[6] Wang, Y., & Zheng, M. (n,d.). “Test Case Generation from UML
Models Retrieved from mzheng@uwlax.edu,”

[7] Bouchaib Falah, Ghita El AlaouiTalibi, Zineb Bouayad “Test Case
Generation From Unified Modeling Language Diagrams”

