

Object Oriented Databases: Concepts and Utility

Omar Lahkim
School of Science and Engineering
Al Akhawayn University in Ifrane

Ifrane, Morocco
o.lahkim@aui.ma

 Nasser Assem
School of Science and Engineering
Al Akhawayn University in Ifrane

Ifrane, Morocco
o.lahkim@aui.ma

Abstract— Object-Oriented Database Systems have

experienced rapid expansion in recent years, gaining a larger

proportion of the database system market. This is due to the

benefits and high performance of Object-Oriented Database

Systems over Relational Database Systems. In this paper, we

explain the main concepts of the Object-Oriented Database

System along with its main components, and its advantages

compared to relational Database Systems. Moreover, we

mention the most popular Object-Oriented Database Systems

along with a case study of the integration of Realm Database in

Mobile Applications to illustrate its advantages and its

simplicity of use.

Keywords—Object-Oriented, Databases, OODBMS, concepts,

utility, Realm

I. INTRODUCTION

 File Systems have proven to be inefficient, and

limited in terms of performance, usability, security,

concurrency, data sharing, and redundancy. This led to

researchers to come up with new technology to solve

those issues which are Database Management Systems

that is a collection of software or programs that maintain

the data records. The most popular data model is the

relational data model which stores the data as tables since

it is based on the relational mathematics. But the Object-

Oriented databases solve some limitations of the

relational model and Relational Database Management

Systems. This model stores data as objects that are

uniquely identifiable and model real world entities that

have a state and behavior which are stored as attributes

and methods in this model as it is easier to implement

with Object-Oriented Programming Languages. The most

popular Object-Oriented Database Management Systems

in 2021 are the GOOGLE Cloud Storage for Firebase,

Apache OODT, Actian NoSQL, ObjectBox and Realm

by MongoDB which we will be implementing in the case

study.

 In this paper, we explain the object-oriented

databases, how they work, their concepts which are based

on the object-oriented model, their components, why

those databases are better than the relational databases,

and a case study which explains and illustrate the

implementation of those object-oriented databases on

mobile applications.

II. BACKGROUND

A. Relational Databases

A relational database is a form of database that stores and

makes data points connected to one another. Relational

databases are based on the relational model, which is itself

based on the relational mathematics and is a simple and

obvious manner of expressing data in tables. Each row in a

relational database is a record with a unique ID called the

key. The columns of the table carry data attributes, and each

record typically includes a value for each attribute, making it

simple to construct links between data points.

Relational Database Management Systems (RDBMS)

make it easier to store and manage data. In a relational

database management system (RDBMS), tables are linked

together using various constraints. Tables are also known as

entities. A single entry is represented by a row, whereas an

attribute is represented by a column.

ORM which stands Object Relational Mapping is a

technology that abstracts the SQL querying by providing

methods and functions to manipulate data in the relational

database programmatically using programming languages

such as Python, Java, PHP using ORM frameworks such as

Eloquent for PHP, Hibernate for Java, SQL Alchemy for

Python. This technology is widely used nowadays and is

easier than writing plain SQL inside the code.

The four crucial properties of the relational database are

referred to as ACID which are:

- Atomicity which

- Consistency

- Isolation

- Durability

The relational database model relies on relationships to link

between data which are:

- One To One

- One to Many

- Many to Many

B. Object Oriented Programming Concepts

Object-oriented programming (OOP) is a programming

paradigm that organizes software design around data, rather

than functions and logic. An object is a data field with its

own set of properties and behavior.

Object-oriented programming focuses on the objects that

developers desire to handle rather than the logic that is

required to manipulate them. This kind of programming is

ideally suited to big, complicated, and frequently updated or

maintained projects. This encompasses manufacturing and

design software, as well as mobile applications; for example,

OOP may be used to simulate manufacturing systems.

An object-oriented program's structure also makes it

useful for collaborative development, where projects are

organized into groups. Code reusability, scalability, and

efficiency are also advantages of OOP.

The object-oriented programming’s building blocks are:

- Classes which are data types that are created by the

user and serve as the blueprint for objects,

properties, and methods.

- Objects are instances of a class that have been

declared and structured.

- State is represented by attributes, which are

declared in the class

- Methods are functions specified within a class.

The main concepts of the Object-Oriented Programming are:

- Encapsulation which stands for the combination of

properties and methods related to the same object.

In the figure above, all the attributes and methods

are encapsulated in each class.

- Abstraction which exposes only the necessary

information to the outside world and hiding their

background details.

For example, in the figure above, we can see that

the person interacts with the phone using buttons,

but he doesn’t know or see how things are executed

and implemented behind the scene.

- Inheritance which supports the code reuse between

classes and improves the efficiency and

development time. As it allows a class to inherit

from other classes properties and methods.

In the following figure, a teacher is a person, so it

inherits all its properties and methods, and a public

teacher is a teacher, so it inherits the properties and

methods from the teacher.

- Polymorphism which is mainly the ability to

process the data in more than one form.

For example, in the figure above, the structure of

the classes triangle, circle, and rectangle is inherited

from the interface Figure, but the implementation of

the methods will not be the same and would be

overwritten.

This paradigm has many advantages namely:

- Modularity

- Reusability

- Productivity

- Scalability

- Security

- Flexibility

III. OBJECT ORIENTED DATABASE

A. Object-Oriented Database

The object-oriented programming is a paradigm that

allows the developer to model real world entities that have a

state and behavior, but the object is only during the lifecycle

of the application once it is stopped or killed all the data

encapsulated in the objects are destructed. This paradigm is

widely used nowadays as it makes the data manipulation

easy and human understandable. The object-oriented

databases are the solution to store and persist the data and the

objects not only during the lifecycle of the application. This

feature solves the problem of recovery and concurrency.

Most database systems generally contain textual and

numerical data, but the object-oriented databases contain

objects, which could hold large documents, pictures, videos,

audio files… These database objects are identifiable by

metadata.

B. Components

The object-oriented database management systems are based

on four different components which are the Object

Structure, Object Classes, Object Identity, and Object

Containment.

- Object Structure means the properties that the

object is composed of the properties of the object

are known as attributes, Moreover, an object wraps

data code into a single unit, providing data

abstraction by concealing implementation details

from the user. The object structure by itself is

composed of three components which are:

Messages, Methods, and Variables.

o Messages act as an intermediary medium

between an object and the outside world.

We can distinguish two types of messages

that are: Read-only messages, and Update

Messages

§ Read-only Messages: The

invoking message is said to be

read-only if the called method

does not modify the value of a

variable.

§ Update Messages: The invoking

message is said to be an update

message if the invoked method

modifies the value of a variable.

o Methods: the body of code that is run

when a message is passed is known as a

method. When a method is called, it

produces an output value. There are two

types of methods:

§ Read-only Methods: The read-

only method refers to a method

that has no effect on the value of

a variable.

§ Update Methods: An update

method is one that changes the

value of a variable using a

method.

o Variables: It keeps track of an object's

data. The variables' data allows the objects

to be distinguished from one another.

- Object Classes in which a real-world item is

referred to as an instance of a class. As a result, we

must first declare a class before creating objects that

differ in the values, they hold but share the same

class definition. Messages and variables are kept in

the objects, which relate to them.

- Object Identity which means even if some or all the

values of variables or method definitions change

over time, an object keeps its identity. We can

distinguish three forms of identity:

o Value: Identity is determined by a data

value (e.g., the primary key of a tuple in a

relational database).

o Name: For identification, a user-supplied

name is utilized (e.g., file name in a file

system).

o Built-in: There is no need for a user-

supplied identifier since identification is

embedded into the data model or

programming languages (e.g., in OO

systems).

- Object Containment signifies that complex or

composite items are objects that contain other

objects. Multiple layers of confinement can exist,

resulting in a containment hierarchy among items.

The figure above illustrates the containment

hierarchy of a bicycle design database.

C. Concepts

- Objects and identity: Every real-world entity is

represented as an object in the same way

(associated with a unique id: used to identify an

object to retrieve).

- Encapsulation: The idea of encapsulation in object-

oriented databases is similar to object-oriented

programming. The main distinction is that whether

the object's data structure is part of the interface is

not explicitly stated. The data structure is

unquestionably a component of the implementation

in computer languages.

The behavior of an object is specified by the

methods defined by the object. The goal of such a

method may be to change the values of some

attributes or to calculate a value based on the

object's current state. Every object can specify an

unlimited number of methods. The notion of

encapsulation transforms the maintenance of critical

procedures into a data-level activity.

- Classes and Instantiation: When looking at the

notion of classes in object-oriented databases, it's

important to understand the difference between the

words class and type. A type is a term that refers to

a group of things that have the same behavior. In

this view, the type of an item is determined by the

operations that may be performed on it. A class is a

group of objects with identical internal structures. In

this approach, a class specifies an object's

implementation, while a type indicates how the

object might be utilized.

The term "instantiation" refers to the ability of a

class specification to produce a group of objects

with the same structure and behavior. A class

defines a structure (a collection of characteristics), a

set of actions, and a set of methods to carry out

those activities.

An object's ability to alter its class is a crucial

element in the development of things. This means

that an object's properties and actions can change

while maintaining its identity. Enabling class

modifications necessitates the development of a

system for dealing with any potential semantic

integrity issues. Applications must handle

exceptions that may occur when an object is

referred to as a different instance of a class than

intended.

- Overloading, overriding, and late binding: It's

common to use the same name for many, but

related, procedures. Assume you want to show

anything on your screen. Different viewers may be

required for different products. You might want to

use the method "view" to see all things. A photo

viewer is initiated when you call "view" and give a

reference to a picture. A media player is started

when you call "view" and supply a reference to a

video. You must first define the operation "view" in

a common superclass "media" of the classes

"image" and "video" to provide this capability. Each

subclass redefines the "view" action to meet its own

requirements. As a result, several methods with the

same operation name are created. Using this feature

has a significant benefit. The code is easier to

maintain, and the addition of a new type does not

necessitate any changes to current program

components. By enabling this option, the system

will no longer link names of operations to their

respective methods at build time. "Late binding"

refers to the run-time binding of operation names to

their associated methods.

- Class Hierarchy and Inheritance: from an existing

class, create a new class (subclass) (superclass). The

subclass inherits all the existing class's properties

and methods, as well as the ability to create new

ones. Multiple inheritance (class lattice) vs. single

inheritance (class hierarchy).

D. OODBMS architecture approaches

The core concept of an object-oriented database

management system (OODBMS) is to give persistence to an

object-oriented programming language (OOPL). The main

distinction is that in this case, the database must hold both

data and methods.

Architecture (Client/Server): There are three basic

approaches to client/server architecture: Object Server, Page

Server, and Database Server.

- Object Server: Between the client and server, there

is a distributed processing environment. Other

OODBMs functions are usually handled by the

server. Client is in charge of transaction control and

programming language interface.

- Page Server: In this client-server approach, the

client is usually in charge of database processing.

The server is in charge of secondary storage

management and request response. A page can

include many complicated or ordinary things.

- Database Server: In this technique, the client simply

sends the request to the server, which processes it

and returns the results to the application. Most of

the database processing takes place on the server.

RDBMSs are the most common users of this

method.

E. Why Object Oriented Databases

- Support for User Defined Data Types: OODBs

gives the ability to create and manage new user

defined data types.

- OODBs allow for the creation of new types of

relationships: inverse relationships are a new sort of

relationship between objects that may be created

using OODBs (a binary relationship)

- Identification does not necessitate the use of keys:

Object data models, unlike relational models,

employ object identity (OID) to identify objects in

the system.

- Gains in performance over RDBMS: Gains in

performance vary per application. Applications that

leverage the object identity notion outperform

RDBMSs in terms of performance.

- Object algebra development: While relational

algebra is based on relational mathematics and is

completely implemented, object algebra has not

been properly described. Union, difference, select,

create, and map are the five basic object-preserving

operators.

- OODBMSs do not require joins: OODBs have the

potential to decrease the number of joins required.

- Equality Predicates in OODBs: There are four types

of equality predicates in OODBs:

o Identity equality

o Object value equality

o Property value equality

o Property identity equality

F. Weaknesses

- No Universal Standards

- Relational and Object Model Coherence: Relational

databases are the foundation of any corporation. To

beat relational databases, object databases must

provide customers with consistent services that

allow them to transition from relational to object

databases. The architecture of the Relational model

and the Object model must be consistent.

- Object database security issues include

authentication, authorization, and accounting.

Security rules such as Discretionary Access Control

(DAC) and Mandatory Access Control (MAC) are

used to safeguard data in object databases. Some

systems use object-oriented ideas such as

encapsulation to ensure security. Authorization

facilities are available in an object database.

- For OODBMSs, there is no fixed query algebra:

There is no standard query algebra for OODB due

to the lack of standards in OODBMS. One of the

causes for the challenge of query optimization is the

lack of standard query algebra. For different object

database, there exist multiple query languages.

- No Views: Views are transient tables in relational

databases. Views are not supported in object

databases. Due to the properties of the Object

Model, such as object identity, an object-oriented

view capability is difficult to create. Views in object

databases are challenging to build due to object-

oriented programming concepts like inheritance and

encapsulation.

- Query Expression Optimization: Query expression

optimization is done to improve the system's

performance. Queries must be optimized if

performance advantages are to be realized.

However, query optimization in object databases is

problematic for the following reasons:

o Data kinds that are defined by the user

o Varieties of kinds that change

o Encapsulation, complex objects, and

procedures

o The Object Query language has a nested

structure

o The Object Identity language has a layered

structure

- Performance advantages over RDBs are limited.

Performance benefits vary from application to

application, resulting in a decrease in performance.

Applications that leverage the object identity notion

outperform RDBMSs in terms of performance.

However, OODBMS performance is poor for

applications that demand bulk database loading and

do not employ OID.

- There are a few basic things that are missing:

Triggers, meta data management, and restrictions

such as UNIQUE and NULL are all missing from

object databases.

G. Difference between OODBMS & RDBMS

Relational databases have been the industry standard for

online and software development for a long time.

Information is stored in this paradigm in linked tables. Links

between complicated pieces of information with various

components can also be saved and accessed here. However,

with an object database, all the unit's components are

immediately available. As a result, the data sets might be

significantly more complicated. When using a relational

database, we usually strive to handle basic data. The more

complicated the data collection, the more links there are,

crowding up the database.

CONCLUSION

Relational databases are undeniably popular, and they

can be found almost anywhere. In the mid-1985s, the object-

oriented database was introduced to overcome these

restrictions and to enable sophisticated database applications

such as CAD, CASE, and others. The popularity of object-

based programming is another factor that encourages the

development of object-based databases. As a result, database

experts believe that combining object-oriented programming

principles with database management systems will result in

more powerful database management systems. Industry uses

a variety of ways to create databases with object-oriented

capabilities. Relational extensions and 18 pure object-

oriented techniques are the most prevalent ways for

developing object-oriented database systems. Many

alternative methodologies are used to create OODBMSs by

various manufacturers. OODBMSs eliminate the constraints

of RDBMSs while also supporting sophisticated database

applications with extra functionalities. However, they are not

well-known in the sector due to a lack of standards. After

some time, various limits in object-oriented database

management systems are discovered.

REFERENCES

[1] Damesha, H. S. (2015). Object Oriented Database Management
Systems-Concepts, Advantages, Limitations and Comparative Study
with Relational Database Management Systems. Global Journal of
Computer Science and Technology.

[2] What is object-oriented programming? the four basic concepts of
OOP. Indeed Career Guide. (n.d.). Retrieved November 15, 2021,
from	https://www.indeed.com/career-advice/career-
development/what-is-object-oriented-programming

[3] What is an object-oriented database?	MongoDB. (n.d.). Retrieved
November 15, 2021,
from https://www.mongodb.com/databases/what-is-an-object-
oriented-database.

[4] Barry, D. K. (1996). The object database handbook: how to select,
implement, and use object-oriented databases. John Wiley & Sons,
Inc..

[5] Bertino, E., & Martino, L. (1993). Object-oriented database systems:
concepts and architectures.	Addison-Wesley Longman Publishing
Co., Inc..

[6] Attoui, A., & Gourgand, M. Performance Evaluation for Clustering
Algorithms in Object-Oriented Database Systems.

[7] Feuerlicht, G., Beranek, M., & Kovar, V. (2021). Design of
Document Databases: What can we Learn from Object-Relational
Databases?.

[8] MongoDB. (n.d.). MongoDB Realm. Retrieved November 17, 2021,
from https://www.mongodb.com/realm

[9] Actian. (2020, December 28). Actian NoSQL Object Database.
Retrieved November 17, 2021, from https://www.actian.com/data-
management/nosql-object-database/

[10] Cloud Storage for Firebase | Firebase Documentation. (n.d.). Firebase.
Retrieved November 17, 2021, from
https://firebase.google.com/docs/storage

[11] Oodt, A. (n.d.). Apache OODT - Distributed Data Management.
Apache OODT. Retrieved November 17, 2021, from
https://oodt.apache.org/

[12] ObjectBox - Edge Database for Mobile, IoT, and Embedded Devices.
(2021, November 5). ObjectBox. Retrieved November 17, 2021, from
https://objectbox.io/

[13] Coronel, C., & Morris, S. (2018). Database Systems: Design,
Implementation, & Management (13th ed.). Cengage Learning.

[14] Ishikawa, H. (2012). Object-Oriented Database System: Design and
Implementation for Advanced Applications (Computer Science
Workbench) (Softcover reprint of the original 1st ed. 1993 ed.).
Springer.

[15] Freeman, E., & Robson, E. (2020). Head First Design Patterns:
Building Extensible and Maintainable Object-Oriented Software 2nd
Edition (2nd ed.). O’Reilly Media.

[16] Mach, E. (2019). Object Oriented Analysis & Design Cookbook:
Introduction to Practical System Modeling. Independently published.

[17] Relational database. (n.d.). IBM. Retrieved November 17, 2021, from
https://www.ibm.com/analytics/relational-database

[18] Education, I. C. (2021, November 3). Relational Databases. IBM
Relational Databases. Retrieved November 17, 2021, from
https://www.ibm.com/cloud/learn/relational-databases

[19] Curator, C. (n.d.). What Are Object-Oriented Databases And Their
Advantages. Object Oriented Database Management Systems.
Retrieved November 17, 2021, from https://www.c-
sharpcorner.com/article/what-are-object-oriented-databases-and-their-
advantages2/

[20] Wikipedia contributors. (2021, November 15). Object database.
Wikipedia. Retrieved November 17, 2021, from
https://en.wikipedia.org/wiki/Object_database

[21] freeCodeCamp.org. (2021, February 20). How to explain object-
oriented programming concepts to a 6-year-old. Retrieved November
27, 2021, from https://www.freecodecamp.org/news/object-oriented-
programming-concepts-21bb035f7260/

[22] Zaiane, O. (1998). The Object-Oriented Data Model. SIMON
FRASER UNIVERSITY. Retrieved November 28, 2021, from
https://www2.cs.sfu.ca/CourseCentral/354/zaiane/material/notes/Chap
ter8/node3.html

[23] SchÃ¶nhart, S. A. M. (n.d.). Object-Oriented Databases - Basic
Concepts. Universität Klagenfurt. Retrieved November 28, 2021,
from http://cs-exhibitions.uni-klu.ac.at/index.php?id=391

[24] Object-oriented databases: the insider tip in database models. (2021,
November 26). IONOS Digitalguide. Retrieved November 28, 2021,
from https://www.ionos.com/digitalguide/hosting/technical-
matters/object-oriented-databases/

[25] GeeksforGeeks. (2021, June 10). Definition and Overview of
ODBMS. Retrieved November 28, 2021, from
https://www.geeksforgeeks.org/definition-and-overview-of-odbms/

