

DEVOPS: PEOPLE OVER PROCESS OVER
TOOLS & DEPENDENCY INJECTION

Omar Lahkim
School of Science and Engineering
Al Akhawayn University in Ifrane

Ifrane, Morocco
o.lahkim@aui.ma

Houda Chakiri

School of Science and Engineering
Al Akhawayn University in Ifrane

Ifrane, Morocco
h.chakiri@aui.ma

Abstract— The Agile software development
methodology kept attracting practitioners in the
software engineering community, but it revealed that the
agile mindset is still not enough to continuously deliver
value to customers. DevOps solved this defect by
extending the agile methodology and breaking the gaps
between the development and operations teams to allow
not only continuous delivery and continuous integration
but also continuous deployment which improved the
performance of the teams in terms of changes frequency,
failure management, and lead time. However, some still
define DevOps as a combination of development and
operations, but it is not about combining the teams, it’s
about a cultural change that leverages people over
processes over tools and gets the teams to understand
each other and work together to deliver value faster and
better. In this paper, we are trying to put in evidence
DevOps culture, and one of the best practices which is
dependency injection.

Keywords— DevOps, Agile, People, Process, Tools,
Dependency Injection

I. INTRODUCTION

Over the past decades, software has evolved into a
critical component of the industry. A new era of
programming languages, frameworks, software
development tools, architectures, and technologies have
been introduced such as Swift Programming Language,
IoT (Internet of Things), Big Data, Cloud Computing,
REST services, etc...

The software development process has gained in
maturity as well, as it relied on the traditional project
management process which was revealed to be less
practical, riskier, and slower. We can identify different
traditional linear models such as Waterfall Model, Spiral
Model, V-Model, etc... In 2001 a new methodology was
officially introduced called Agile, it made the software
development life cycle not only faster but also more
valuable. This new model made the transition from the
traditional linear model to an iterative model. Many
frameworks and methodologies were derived from this
mindset such as Scrum, Lean, and Kanban. Agile
addresses the gaps in Customer and Developer
communications, but it is not sufficient to deliver a fully
valuable product to the end-user. DevOps was introduced
few years before to extend the continuous development

goals of the agile methodology to continuous integration
and continuous release by improving the communication
between Development and Operations teams. To leverage
the continuous release, DevOps relies on automation of
change, configuration, and release processes. Automation
takes us the A of CAMS which are the four values of
DevOps, C for Culture which is an important component
of this paper, A for Automation, M for measurement, and
S for sharing. DevOps culture is not about the
entertainment facilities integrated in companies and
organizations, it’s about the behavior. It exists among
people with mutual understand of each other and where
they’re coming from. DevOps suggests also practices
reinforcing the DevOps Culture, in this paper, we will
cover some of those practices but in more details
the Dependency Injection practice which is inspired from
the popular software engineering design pattern
“Dependency injection”, or “Inversion of Control”. The
organization of this paper is as follows: Section 2
discusses Agile Concepts, DevOps concepts, and their
relationship. Section 3 explains the DevOps culture which
is mainly about the “People over Process over Tools”
principle. Section 4 introduces the practice of Dependency
Injection suggested by DevOps. Section 5 summarizes
and concludes the paper.

II. BACKGROUND

A. Agile

Unlike, the traditional project management approach
which relies on a linear model that runs generally through
five stages: Requirements, Design, Implementation,
Verification, and Maintenance. Each phase results in an
approved work that is then used in the next phase. Agile is
a new software development approach for planning and
managing projects which relies mainly on teamwork,
collaboration, timeboxing tasks, and the flexibility to
respond to change as quickly as possible. This
methodology follows an iterative process to create a
valuable product for the customer. We can distinguish
different frameworks extracted from the agile mindset
such as Scrum, XP, Lean, Kanban, and Scrumban. Each
has its own particularities, for example in scrum iterations
are called “sprints”, the goal behind each sprint is to
create a valuable product, before each sprint a sprint
planning meeting is organized to plan the sprint, during
the sprint stand-up meetings of no more than 15 minutes

are done to assure the progression, at the end of each
sprint a review meeting is organized to test the product,
and finally the last meeting is the retrospective meeting in
which the teams discuss the just-finished sprint. But they
all rely on the Agile Manifesto which was created by a
group of software engineering. The Manifesto includes
the four values of agile which are:·

• Individuals and Interactions over Processes and
Tools·

• Working Software over Good Documentation

• Customer Collaboration over Negotiating
Contracts

• Respond to Change over Following a Plan

 The first value of agile which is Individuals and
Interactions over Processes and Tools introduces the main
subject of this paper, as it means having a coherent team
working together effectively is more important than
Processes and Tools, but that does not mean that
Processes and Tools are not important.

B. DevOps

Figure 1: Shows DevOps Processes

DevOps is a combination of Dev which refers to

Software Development and Ops that stands for IT
Operations. The goal behind this combination is to
stimulate a collaborative environment. The Development
Team consists of developers, the front end, and Quality
Assurance. They assure the development and testing of
the software, as for the Operations team is made of the
System administrator, Network Administrator, and
Database Administrator, and takes care of the deployment
and monitoring of the software. DevOps goes through
eight different phases to deliver a valuable product:

Figure 2: Shows the importance of DevOps

DevOps is situated in five levels:

• Values

• Principles

• Methods

• Practices

• Tools

 DevOps values are summarized in the
abbreviation “CAMS” which are Culture, Automation,
Measurement, and Sharing. Culture is the interactions
among groups and people and the capacity to understand
each other, their goals, and responsibilities. This culture
introduces the idea of “people over process over tools”.
Automation refers mainly to infrastructure as code
which’s the main purpose is to enable development or
operations teams to automate the management,
monitoring, and resources provisioning. Measurement
insists on measuring the MTTP (Mean time to recover),
Cycle time, cost, and revenue. Sharing is about
collaboration and feedback.

 DevOps principles are described as “The Three
Ways” which are:

- The first way (Systems Thinking): Work always
flows in one direction which means should done
right the first time around.

- The second way (Amplify Feedback loop):
Create, Shorten, and amplify feedback loops
which encourages feedbacks to be given as early
as possible.

- The third way (Culture of Continual
Experimentation and Learning): Continued
experimentation, in order to learn from mistakes,
and achieve mastery.

Five methods are used in DevOps which are:
1. People Over Process Over Tools

2. Continuous Delivery

3. Lean Management

4. Visible ops-style change control

5. Infrastructure as Code

Many Practices have been found useful and practical
to reinforce and improve the DevOps Culture are:

- Chaos Monkey
- Blue/Green Deployment

- Dependency Injection

- Andon Cords

- The Cloud Embedded Teams

- Blameless Postmortems

- Public Status Pages
- Developers on Call

- Incident Command System

 DevOps Also relies on tools to assure the
automations, the continuous integration, and continuous
deployment. It is important to choose wisely the tools that
compliment both each other and your strategy. There are
different tools for each purpose such as “Chef”
configuration management, “Jenkins” to support
continuous integration, “Docker” for microservices, “Jira”
for collaboration, “Ganglia” for Monitoring, and “Visual
Studio” for development. But the choice of DevOps tools
depends on many factors which are mainly the people and
the strategy of the organization.

III. PEOPLE OVER PEOCESS OVER TOOLS

Figure 3: Shows the difference between people, process, and tools

DevOps is defined as a combination of people,
processes, and tools that aims to continuously deliver
value to customers or end-users. This combination follows
a certain order according to their priorities, but that
doesn’t mean that any of them is not important. People
come before process, and process comes before tools.
What does that mean?

The worst common mistake is starting by looking for
the right tools to fulfill the needs, It could cost the
company a lot of time and money, as choosing, or
developing a tool is an investment. Sometimes a specific
tool is either expensive or inexistent, in that case, the
company should decide to develop its own, but in case
this tool doesn’t fit the teams, that would cost the
company either money or human resources.

People and their interactions are the most important,
the DevOps culture focuses primarily on how people
understand each other, and at what level they can
collaborate and work together to continuously deliver,
test, integrate, improve and deploy. Having conflicting
goals, speaking different languages within a team, and
moving fast and breaking things could only break the
system. A mutual understanding is mandatory within a
team in order to keep improving and moving forward. As
Zetong Huang who is a Software engineer at ELMO said

“The right DevOps culture requires communication and
collaboration from both developers and Operations teams.
To work effectively, with a shared vision, the team needs
to be united and work together. As Sun Tzu says,
“Harnessing the power of teams to achieve objectives is a
wise use of energy.””

Processes have a big impact on breaking a system,
they should be correct and assigned to the right person.
Incorrect processes may not be well-documented,
presented in the wrong order, or undocumented. Processes
aim to achieve a continuous Integration, continuous
Delivery, and continuous Deployment. Continuous
Integration means integrating individual code with the
overall development environment after building and
testing. Continuous Integration which depends on the
previous layer (Continuous Integration), as it involves
building, testing, and improving the software code and
user environments. Continuous Deployment consists of
deploying code to production. All those processes could
be done manually, or automatically. But to make them
smoother, faster, and easier they should be automated
using specific tools.

Tools might not be as important as people and
processes, but they still are important in DevOps. Some
processes are done manually which consumes much time
and effort from the teams, that takes us to automation.
Automation could be on different levels such as testing,
and deployment. For that, the company should wisely
choose suitable tools to support the automation while
keeping the team productive and effective. They should fit
the strategy, and also support each other.

To summarize, the first step is to look for the right
persons to fulfill their roles, then make sure the process is
correct and optimal, then finally choose the right tools to
increase productivity and eliminate waste.

IV. DEPENDENCY INJECTION
Dependency Injection also known as DI and inversion

of control which is a technique used widely in software
engineering. There are multiple ways to use an object
inside a class, but some are less efficient than the others.
The first common way is to instantiate the object inside
the class, but this approach makes the class dependent on
that object, so the class becomes limited in terms of
reusability, flexibility, and extensibility. In other hand,
another approach which is more practical and more
advised, passing the object in runtime, some languages, or
frameworks support the automatic object linking for
example spring boot, the framework takes care of passing
the object to the class on runtime, some languages or
frameworks require a manual integration. This approach is
called Dependency Injection.

Applications are composed of objects that collaborate
and work together to fulfill the application’s goal,
instantiating for each class a different instance of an
object is considered as a waste and complicated approach,
this makes the test much difficult, and increases the
dependencies in the code which is depreciated.

This applies on an organizational level; people also
could be seen as dependencies. In the organizational level,
Processes should not be dependent on a certain person
within a team or another team, everyone should be aware
of what the others do in case a person or a team is
unreachable or absent when needed.

This also applies to software, the dependency between
software should be minimized as much as possible, let’s
take an example of a company that restricts the use of a
certain technology, while a developer uses that technology
which also requires some other modifications in the
infrastructure, that would create a compatibility issues and
dependency problems. In this case, the advised approach
is to use a technology that is compatible with all the cases
possible.

CONCLUSION
This paper aims to explain the idea called “People

over process over tools”, and how the dependency
injection pattern completes the DevOps culture. DevOps
is not only about using tools to create and maintain a
product, its more than that, DevOps is a culture that
should be applied implicitly while taking decisions,
gathering teams, and working together to deliver a
valuable product to the customer or the end-user. This
philosophy invites us to consider certain values,
principles, methods, practices, and tools.

This paper gives an overview over DevOps in general
while focusing on the principle “People over Process over
Tools” and the practice of dependency injection inside the
teams.

REFERENCES

[1] Mandi Walls, “Building a DevOps Culture”, 2013

[2] Patrick Debois, “Just Enough Developed Infrastructure”, 2017

[3] Sam Guckenheimer, “What is DevOps Culture?”, 2017

[4] Alex Honor, “People over Process over Tools”, 2010

[5] Ernest Mueller, and James Wickett, “Devops Foundations”,
2020

[6] Sumit Singh, “DevOps Best Practices ”, 2020

[7] Nick Kartman, “How to Implement DevOps with CAMS”,
2019

[8] Aymeric Hemon-Hildgen, Barbara Lyonnet, Frantz Rowe,

and Brian Fitzgerald, “From Agile to DevOps: Smart Skills
and Collaborations”, 2020

[9] Daniel Ståhl, Torvald Mårtensson, Jan Bosch, “Continuous
practices and devops: beyond the buzz, what does it all
mean?”, 2017

[10] Clemance Plu, “Understanding the DevOps Process”, 2019

